SELECT HV™ ETCH

Ideal pinpoint accurate viscosity for self-etch techniques

SELECT HV ETCH is a superior 35% high viscosity phosphoric etch available with Benzalkonium Chloride (BAC). SELECT HV ETCH is used to condition the tooth structure before bonding adhesives, composites, or sealants. SELECT HV ETCH is specially formulated for maximum working and handling, pinpoint placement performance, and eliminating run-on onto the dentin surface.

• Thixotropic
• Blue in colour for easy visualization and contrast
• Washes off easily without leaving residue
• Bulk syringe dispensing
• Contains BAC, an antimicrobial agent
• 35% High Viscosity Phosphoric Acid Dentin/Enamel Etchant with BAC

SELECT HV ETCH delivers a smooth, non-stringy material which can be used in everyday restorative procedures but also performs well when etching enamel margins without etching dentin, otherwise known as the “hybrid technique”. This is desirable when etching enamel when applying a self-etch adhesive, or for the immediate dentin sealing procedure. Etching uncut enamel with SELECT HV ETCH significantly improves the quality of the etch pattern and bonding surface.

In-Vitro Research on Etchants with the Antibacterial agent Benzalkonium Chloride (BAC)

Eliminating bacteria from the prepared cavity is one of the most important procedures used during restorative treatments; however the procedures used when treating caries do not always eliminate all of the microorganisms in residual tissues.1 Streptococcus mutans is one of the major pathogens for dental decay. BISCO phosphoric acid with BAC has been shown to create the highest zone of inhibition when compared to Consepsis (2% CHX), Klorhex (2% CHX), NaOCl 3%, and H2O2.2 In another study comparing the antimicrobial activities of etchant gels with and without BAC the BISCO phosphoric acid with BAC resulted in significantly less bacterial recovery than phosphoric acid alone. The phosphoric acid without any antibacterial component was not able to inactivate this bacterium.3

NOTE: Inclusion of BAC has not been shown to correlate with a reduction in secondary decay in patients. In-vivo clinical studies to evaluate the effects of BAC on oral bacteria or caries have not been performed.

4. Data provided by: Chan, University of Texas Health Science Center at San Antonio Dental School

U.S. Patent: 5,385,728